G4: Verschobene Normalparabeln der Form f(x)=x²+e: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)
Zeile 6: Zeile 6:
  
  
[[Bild:Normalparabel-hoch.jpg]] [[Bild:Normalparabel.jpg]]
+
'''Bilder gelöscht'''
  
 
'''''links''''': Die normalparbel ist um 2 nach oben auf der Y-Achse verschoben
 
'''''links''''': Die normalparbel ist um 2 nach oben auf der Y-Achse verschoben
Zeile 48: Zeile 48:
  
 
- http://www.youtube.com/watch?v=kakHJvnjjFo
 
- http://www.youtube.com/watch?v=kakHJvnjjFo
 +
 +
 +
[[Kategorie:Quadratische Funktionen]]

Aktuelle Version vom 13. Februar 2012, 14:30 Uhr

Verschobene Normalparabel der Form f(x)=x²+e

Die verschobene Normalparabel der Form "f(x)=x²+e" ist auf der Y-Achse verschoben.

Sie ist nach oben verschoben wenn e>0 ist und nach unten verschoben wenn e<0 ist.


Bilder gelöscht

links: Die normalparbel ist um 2 nach oben auf der Y-Achse verschoben

rechts: Das ist eine Normalparabel


Die verschobene Normalparabel:

Symmetrieachse: y-Achse Symmetrieachse: y

Scheitelpunkt: S(0/e)

Die verschobene Normalparabel der Form f(x)= X²+e ist immer nach oben geöffnet


Die verschobene Normalparabel kann sowohl in den positiven wie auch in den negativen Bereich verschoben werden.

Wenn e negativ ist so wird die Parabel in den negativen Bereich der Y-Achse verschoben.

Wenn e positv ist so wird die Parabel nach oben auf der Y-Achse verschoben.


Quellen

- http://www.mathe1.de/mathematikbuch/funktionen_verschobenenormalparabel_31.htm : Formel

- http://www.schule-studium.de/Mathe/Quadratische_Funktonen.html : Bilder

- Klett Elemente der Mathematik Klasse 9 : Scheitelpunkt, Symetrieachse und Parabeln generell

- http://www.youtube.com/watch?v=kakHJvnjjFo


Zum Üben!!

- http://www.tiburski.de/cybernautenshop/virtuelle_schule/dfu/quadratische_funktionen/index2.html (erste aufgabe b = e)

- http://klassenarbeiten.de 9. Klasse mathe arbeit 7b (7. Aufgabe)

- http://www.youtube.com/watch?v=kakHJvnjjFo