Darstellung von Geraden und Ebenen: Unterschied zwischen den Versionen
(→Normalenform:) |
(Kategorie:Analytische Geometrie) |
||
(5 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 26: | Zeile 26: | ||
<math>E: \vec x=\vec p+r*\vec u+s* \vec v </math> <math>(r, s \in \mathbb{R})</math> | <math>E: \vec x=\vec p+r*\vec u+s* \vec v </math> <math>(r, s \in \mathbb{R})</math> | ||
− | |||
Zeile 32: | Zeile 31: | ||
==== Normalenform: ==== | ==== Normalenform: ==== | ||
− | <math>[\vec n(\vec x - SV)]</math> | + | <math>[\vec n(\vec x - SV)]= 0</math> |
Bei drei gegebenen Vektoren <math>\vec a</math> <math>\vec b</math> <math>\vec c</math> bildet man das Kreuzprodukt aus <math> \vec n =\overrightarrow {ac} \times \overrightarrow {ab}</math><br />. | Bei drei gegebenen Vektoren <math>\vec a</math> <math>\vec b</math> <math>\vec c</math> bildet man das Kreuzprodukt aus <math> \vec n =\overrightarrow {ac} \times \overrightarrow {ab}</math><br />. | ||
Zeile 39: | Zeile 38: | ||
==== Koordinatenform: ==== | ==== Koordinatenform: ==== | ||
− | + | <math>\! E: ax+by+cz=d</math> | |
+ | <br /><br /> | ||
=== Formumformungen === | === Formumformungen === | ||
Zeile 83: | Zeile 83: | ||
Zielgleichung: <math>\!n_1ax+n_2by+n_3cz=0</math> | Zielgleichung: <math>\!n_1ax+n_2by+n_3cz=0</math> | ||
+ | |||
+ | |||
+ | |||
+ | [[Kategorie:Analytische Geometrie]] |
Aktuelle Version vom 27. Dezember 2010, 10:49 Uhr
Inhaltsverzeichnis |
Geraden
Eine Gerade ist durch zwei Punkte definiert.
In der vektoriellen Darstellung ist eine Gerade durch einen Stützvektor und einen Richtungsvektor beschrieben.
Die Geradengleichung in Parameterform ist also:
Bei zwei gegebenen Punkten A und B ist z.B. der Stützvektor und der Richtungsvektor.
Ebenen
Parameterform:
Eine Ebene wird durch zwei linear unabhängige Richtungsvektoren aufgespannt.
Die Parametergleichung für eine Ebene ist:
Normalenform:
Bei drei gegebenen Vektoren bildet man das Kreuzprodukt aus
.
Der Stützvektor ist .
Koordinatenform:
Formumformungen
Parameterform in Koordinatenform
Als lineares Gleichungssystem lösen.
Parameterform in Normalenform
1) Normalenvektor finden durch
2) Der Stützvektor bleibt gleich
Zielgleichung:
Koordinatenform in Parameterform
Bei 3 Spurpunkten: Parametergleichung aus 3 Punkten. Man wähl einen Stützvektor und zwei Richtungsvektoren.
Bei 2 Spurpunkten Sx,sy: Ebene liegt parallel zur damit ist der Richtungvektor
Koordinatenform in Normalenform
bestimmen durch Koeffizienten der Koordinatenform also Als Stützvektor wählt man einen Spurpunkt.
Zielgleichung:
Normalenform in Koordinatenform
Ausmultiplizieren des Skalarprodukts.
Zielgleichung: