Symmetrie.: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
(Kategorie:Differential- und Integralrechnung)
Zeile 27: Zeile 27:
  
 
Sind die Exponenten ungerade kann man sagen, dass der Graph punktsymmetrisch ist.
 
Sind die Exponenten ungerade kann man sagen, dass der Graph punktsymmetrisch ist.
 +
 +
 +
 +
[[Kategorie:Differential- und Integralrechnung]]

Version vom 27. Dezember 2010, 10:29 Uhr

Symmetrie beschreibt den Verlauf eines Graphen. Es gibt zwei verschiedene Symmetriearten. Einmal die Achsensymmetrie und zum anderen die Punktsymmetrie.

Die Achsensymmetrie spiegelt den Graphen auf der y-Achse.

Man geht folgendermaßen vor, um die y-Achsensymmetrie zu bestimmen:

f(-x)= f(x)

Hat man nun die Funktion f(x)=x4-4x2+10 gegeben, formt man die Funktion entsprechendermaßen nach f(-x)= f(x) um.

(-x)4 -4(-x)2+10 = x4-4x2+10

Nun kann man erkennen, dass f(-x) gleich f(x) ist und somit auch feststellen, dass es sich um eine Funktion handelt, die achsensymmetrisch ist.

Sind die Exponenten gerade kann man sagen, dass der Graph achsensymmetrisch sein muss.

Die Punktsymmetrie erkennt man dadurch, dass sie durch den Koordinaten-Ursprung verläuft.

Man geht folgendermaßen vor, um diese Symmetrie zu bestimmen.

f(-x)=-f(x)

Hat man die Funktion x5+x3+10, trägt man diese wieder in f(-x)=-f(x) ein. Sind beide Funktionsterme gleich, dann ist der Graph punktsymmetrisch.

-(x)5-(x)3+10 = - (x5+x3+10)

Sind die Exponenten ungerade kann man sagen, dass der Graph punktsymmetrisch ist.