Kurvendiskussion.: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
(Extrempunkte)
(Grenzverhalten)
Zeile 50: Zeile 50:
 
== Grenzverhalten ==
 
== Grenzverhalten ==
  
Der Verlauf des Graphen bei '''<u>unendlich großen bzw. kleinen x-Werten</u>''' wird durch das Grenzverhalten beschrieben.
+
Der Verlauf des Graphen bei '''<u>unendlich großen bzw. unendlich kleinen x-Werten</u>''' wird durch das Grenzverhalten beschrieben.
  
  

Version vom 8. Dezember 2009, 18:08 Uhr

Inhaltsverzeichnis

Definitionsbereich

Symmetrie

Punktsymmetrie

f\!(-x)=-f(x)

Alle Exponenten der Funktion sind ungerade.

Achsensymmetrie

f\!(-x)=f(x)

Alle Exponenten der Funktion sind gerade.


Funktionen mit geraden und ungeraden Exponenten weisen keine Symmetrie auf.

Nullstellen

Schnittpunkte der Funktion mit der x-Achse

 f\!(x)=0

Ableitung

1. Ableitung f\!\,'(x)

f\!\,'(x_0) gibt die Steigung m im Punkt x_0\! an.


2. Ableitung f\!\,''(x)

f\!\,''(x_0) gibt die Krümmung von x_0\! an.

Bei positiven Werten handelt es sich dabei um eine Rechtskrümmung, bei negativen Werten, um eine Linkskrümmung.


3. Ableitung f\!\,'''(x)


siehe Ableitungsregeln.

Extrempunkte

In Extrempunkten (Hoch- und Tiefpunkten) ist die Steigung m=0,
deshalb folgt die notwendige Bedingung f\!\,'(x)=0

Wendepunkte

Grenzverhalten

Der Verlauf des Graphen bei unendlich großen bzw. unendlich kleinen x-Werten wird durch das Grenzverhalten beschrieben.


\lim_{x \to \infty}f(x)


\lim_{x \to -\infty}f(x)