Scheitelpunkt und Schnittpunkte ausrechnen: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
(Scheitelpunkt)
(Scheitelpunkt)
Zeile 20: Zeile 20:
  
 
[http://wikis.zum.de/kas/G11:_Normalform_und_Scheitelpunktsform]
 
[http://wikis.zum.de/kas/G11:_Normalform_und_Scheitelpunktsform]
 +
 +
== Schnittpunkte einer parabel bei der x-Achse ==

Version vom 17. November 2011, 14:57 Uhr

Scheitelpunkt

Beispiel :

   Die Normalform : 2x²-12x+6
   Die 2 vor dem x² teilt alle anderen Terme : 2x(x²-6x+3)
   Man entfernt vom Term in der Klammer das absolute Glied (hier 3) , 
   die Potenz beim x und das mittlere x nach dem linearen Glied.
   Danach teilt man das lineare Glied, indiesem Fall die 6, noch durch
   2. Den so erhaltenen Term setzt man in Klammern und fügt die Potenz wieder an. : 
   (x²-6x+3)
   (x-6)
   (x-3)² 
   Diesen Term multipliziert man wieder aus mit hilfe der
   Binomischen Formel. Allerdings steht jetzt eine 9 als absolutes Glied am Schluss. : (x-3)²=(x²-6x+9)
   Da hier aber als Summand +9 rauskommt und in der 
   Ausgangsklammer +3 stand, muss noch die Differenz, also 6, vom vereinfachten Ausdruck abgezogen werden. :((x-3)²-6)
   Am Ende wird der Faktor wieder eingeklammert und man bekommt die Scheitelpunktform. : 
   2*((x-3)²-6)
   2(x-3)²-12

[1]

Schnittpunkte einer parabel bei der x-Achse