G3: Verschobene Normalparabeln der Form f(x)=x²+e: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
(Defintion)
Zeile 5: Zeile 5:
 
Die verschobene Normalparabel der Form f(x)=x²+e unterscheidet sich von der Normalparbel ( f(x)=x² ) durch den Faktor "e", welcher die Position des Scheitelpunktes auf der y-Achse angibt. Ist der Faktor "e" größer als 0, so befindet sich der Scheitelpunkt der Parabel im positiven Bereich der y-Achse; ist der Faktor "e" kleiner als 0, so befindet sich der Scheitelpunkt im negativen Bereich der y-Achse.  
 
Die verschobene Normalparabel der Form f(x)=x²+e unterscheidet sich von der Normalparbel ( f(x)=x² ) durch den Faktor "e", welcher die Position des Scheitelpunktes auf der y-Achse angibt. Ist der Faktor "e" größer als 0, so befindet sich der Scheitelpunkt der Parabel im positiven Bereich der y-Achse; ist der Faktor "e" kleiner als 0, so befindet sich der Scheitelpunkt im negativen Bereich der y-Achse.  
 
Der Graph der Funktion f(x)=x²+e ist deckungsgleich zur Normalform, das bedeutet er hat die y-Achse als Symmetrieachse und der Scheitelpunkt S(0/e).  
 
Der Graph der Funktion f(x)=x²+e ist deckungsgleich zur Normalform, das bedeutet er hat die y-Achse als Symmetrieachse und der Scheitelpunkt S(0/e).  
 +
Die Normalparabel dieser Form ist '''immer''' nach oben geöffnet.
  
  
 
[[Bild:Normalparbel-hoch.jpg]][[Bild:Normalparabel-unten.jpg]]
 
[[Bild:Normalparbel-hoch.jpg]][[Bild:Normalparabel-unten.jpg]]
 
 
  
 
=== Die Formeln ===
 
=== Die Formeln ===
  
 
Es gibt zwei Möglichkeiten diese verschobene Normalparabel darzustellen: Die Formel, bei welcher, der Scheitelpunkt im positiven Bereich liegt, lautet f(x)=x²'''+'''e; die Formel, bei welcher, der Scheitelpunkt im negativen Bereich liegt, lautet f(x)=x²'''-'''e.
 
Es gibt zwei Möglichkeiten diese verschobene Normalparabel darzustellen: Die Formel, bei welcher, der Scheitelpunkt im positiven Bereich liegt, lautet f(x)=x²'''+'''e; die Formel, bei welcher, der Scheitelpunkt im negativen Bereich liegt, lautet f(x)=x²'''-'''e.

Version vom 16. Dezember 2009, 09:32 Uhr

Verschobene Normalparabel der Form f(x)=x²+e

Defintion

Die verschobene Normalparabel der Form f(x)=x²+e unterscheidet sich von der Normalparbel ( f(x)=x² ) durch den Faktor "e", welcher die Position des Scheitelpunktes auf der y-Achse angibt. Ist der Faktor "e" größer als 0, so befindet sich der Scheitelpunkt der Parabel im positiven Bereich der y-Achse; ist der Faktor "e" kleiner als 0, so befindet sich der Scheitelpunkt im negativen Bereich der y-Achse. Der Graph der Funktion f(x)=x²+e ist deckungsgleich zur Normalform, das bedeutet er hat die y-Achse als Symmetrieachse und der Scheitelpunkt S(0/e). Die Normalparabel dieser Form ist immer nach oben geöffnet.


Normalparbel-hoch.jpgNormalparabel-unten.jpg

Die Formeln

Es gibt zwei Möglichkeiten diese verschobene Normalparabel darzustellen: Die Formel, bei welcher, der Scheitelpunkt im positiven Bereich liegt, lautet f(x)=x²+e; die Formel, bei welcher, der Scheitelpunkt im negativen Bereich liegt, lautet f(x)=x²-e.