Darstellung von Geraden und Ebenen: Unterschied zwischen den Versionen
(→Ebenen) |
|||
Zeile 17: | Zeile 17: | ||
=== Ebenen === | === Ebenen === | ||
+ | |||
+ | |||
+ | ==== Parameterform: ==== | ||
Eine Ebene wird durch zwei linear unabhängige Richtungsvektoren aufgespannt. | Eine Ebene wird durch zwei linear unabhängige Richtungsvektoren aufgespannt. | ||
Zeile 25: | Zeile 28: | ||
− | |||
− | Normalenform: <math>[\vec n(\vec x - SV)]</math> | + | |
+ | ==== Normalenform: ==== | ||
+ | |||
+ | <math>[\vec n(\vec x - SV)]</math> | ||
Bei drei gegebenen Vektoren <math>\vec a</math> <math>\vec b</math> <math>\vec c</math> bildet man das Kreuzprodukt aus <math> \vec n =\overrightarrow {ac} \times \overrightarrow {ab}</math><br />. | Bei drei gegebenen Vektoren <math>\vec a</math> <math>\vec b</math> <math>\vec c</math> bildet man das Kreuzprodukt aus <math> \vec n =\overrightarrow {ac} \times \overrightarrow {ab}</math><br />. | ||
Zeile 33: | Zeile 38: | ||
+ | |||
+ | |||
+ | ==== Koordinatenform: ==== | ||
+ | |||
+ | <math>\! E: ax+by+cz=d</math> | ||
=== Formumformungen === | === Formumformungen === |
Version vom 3. Dezember 2009, 11:33 Uhr
Inhaltsverzeichnis |
Geraden
Eine Gerade ist durch zwei Punkte definiert.
In der vektoriellen Darstellung ist eine Gerade durch einen Stützvektor und einen Richtungsvektor beschrieben.
Die Geradengleichung in Parameterform ist also:
Bei zwei gegebenen Punkten A und B ist z.B. der Stützvektor und der Richtungsvektor.
Ebenen
Parameterform:
Eine Ebene wird durch zwei linear unabhängige Richtungsvektoren aufgespannt.
Die Parametergleichung für eine Ebene ist:
Normalenform:
Bei drei gegebenen Vektoren bildet man das Kreuzprodukt aus
.
Der Stützvektor ist .
Koordinatenform:
Formumformungen
Parameterform in Koordinatenform
Als lineares Gleichungssystem lösen.
Parameterform in Normalenform
1) Normalenvektor finden durch
2) Der Stützvektor bleibt gleich
Zielgleichung:
Koordinatenform in Parameterform
Bei 3 Spurpunkten: Parametergleichung aus 3 Punkten. Man wähl einen Stützvektor und zwei Richtungsvektoren.
Bei 2 Spurpunkten Sx,sy: Ebene liegt parallel zur damit ist der Richtungvektor
Koordinatenform in Normalenform
bestimmen durch Koeffizienten der Koordinatenform also Als Stützvektor wählt man einen Spurpunkt.
Zielgleichung:
Normalenform in Koordinatenform
Ausmultiplizieren des Skalarprodukts.
Zielgleichung: