Affine Abbildungen: Unterschied zwischen den Versionen
Aus KAS-Wiki
Zeile 15: | Zeile 15: | ||
<math>\vec x\,'=A*\vec x+\vec c</math> | <math>\vec x\,'=A*\vec x+\vec c</math> | ||
+ | |||
+ | LGS: | ||
+ | |||
+ | <math>\vec x_1\,'=a_1x_1*b_1x_2+c_1</math> | ||
+ | |||
+ | <math>\vec x_2\,'=a_2x_1+b_2x_2+c_2</math> |
Version vom 3. Dezember 2009, 11:35 Uhr
Definition:
Eine geradentreue und umkehrbare geometrische Abbildung der Ebene auf sich selbst nennt man eine affine Abbildung oder Affinität.
Die affine Abbildung bildet ein neues Koordinatensystem.
Die einzelnen Spalten der Matrix dürfen nicht linear abhängig sein.
LGS: