Turiner Grabtuch: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: == Turiner Grabtuch == === Aufgabe: === Im Jahr 1988 wurden Proben des Tuches genommen: * Zürich: ca.92,15% der ursprünglichen <sup>14</sup>C-Atome übrig * Oxford...)
 
(Turiner Grabtuch)
Zeile 11: Zeile 11:
 
Halbwertszeit <math>T_H</math> von <sup>14</sup>C beträgt ca.5730 Jahre
 
Halbwertszeit <math>T_H</math> von <sup>14</sup>C beträgt ca.5730 Jahre
  
 +
Frage: Wann entstand das Tuch? (Zu welcher Zeit waren noch 100% der <sup>14</sup>C-Atome vorhanden?)
  
 
=== Lösung ===
 
=== Lösung ===

Version vom 15. Februar 2011, 12:43 Uhr

Turiner Grabtuch

Aufgabe:

Im Jahr 1988 wurden Proben des Tuches genommen:

  • Zürich: ca.92,15% der ursprünglichen 14C-Atome übrig
  • Oxford: ca.91,33% der ursprünglichen 14C-Atome übrig
  • Arizona: ca.92,48% der ursprünglichen 14C-Atome übrig

Halbwertszeit T_H von 14C beträgt ca.5730 Jahre

Frage: Wann entstand das Tuch? (Zu welcher Zeit waren noch 100% der 14C-Atome vorhanden?)

Lösung

Halbwertszeit: Zeit in der sich die Menge der Atome (Anfangswert) halbiert.
T_H=-\frac{ln(2)}{k}

Nach k auflösen k=-\frac{ln(2)}{T_H}

T_H einsetzten in die Formel k=-\frac{ln(2)}{5730}=-0,000121

Es handelt sich um exponentiellen Zerfall, weil es keine Schranke gibt.

Formel des exponentiellen Zerfalls 
 f(t)=c\cdot e^{kt}

c ist der Anfangswert

k ist ist die Zerfallskonstante

t ist die Zeit in Jahren

Gesucht ist t zum Zeitpunkt als noch 100% der urspruenglichen 14C-Atome vorhanden sind

1\cdot c=c\cdot e^{-0,000121t}

1=e^{-0,000121t}