Gemeinsame Punkte einer Funktionsschar.

Aus KAS-Wiki
Wechseln zu: Navigation, Suche

Gemeinsame Punkte einer Schar bedeutet das fk(x) Punkte hat, die von k unabhängig sind. Man sucht gemeinsame Punkte von zwei Funktionen fk(x) bei denen k1 \not= k2.
Das bedeutet:

fk1(x)=fk2(x)

Beispielfuntionsschar:
fk(x)=2kx2+4xk+5


Wir setzen fk1(x) mit fk2(x) gleich und lösen sie auf: 2k1x2+4xk1+5=2k2x2+4xk2+5
<=>2k1x2+4xk1-2k2x2-4xk2=0
<=>x(2k1x-2k2x+4k1-4k2)=0
<=>x1=0 v. 0=2k1x-2k2x+4k1-4k2

Für den Term 0=2k1x-2k2x+4k1-4k2 gibt es keine Lösung die unabhängig von k ist. Durch die Bedingung k1 \not= k2 bleibt x1=0 die einzige Lösung.

=>f(0)=5 Der gemeinsame Punkt der Schar fk(x) liegt bei P(0/5)