Spatprodukt.

Aus KAS-Wiki
Version vom 17. Dezember 2010, 11:23 Uhr von Meric K. (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Mit dem Spatprodukt berechnet man das Volumen eines durch drei Vektoren aufgespannten Spats.

Die allgemeine Formel lautet: V_{\vec{a},\vec{b},\vec{c}} =
(\vec{a} \times \vec{b}) \cdot \vec{c}

Beispiel 1

Berechne das Volumen des Spat, das durch die Vektoren \vec a=\begin{pmatrix}
2 \\4 \\0 \end{pmatrix} , \vec b= \begin{pmatrix}
0 \\3 \\0 \end{pmatrix} und \vec c= \begin{pmatrix}2 \\2 \\6 \end{pmatrix}

Also V_{\vec{a},\vec{b},\vec{c}} =
(\begin{pmatrix}
2 \\4 \\0 \end{pmatrix} \times \begin{pmatrix}
0 \\3 \\0 \end{pmatrix}) \cdot \begin{pmatrix}2 \\2 \\6 \end{pmatrix} = \begin{pmatrix}
0 \\0 \\6 \end{pmatrix} \cdot \begin{pmatrix}2 \\2 \\6 \end{pmatrix} = 0+0+36 = 36