Beschr. Wachstum

Aus KAS-Wiki
Version vom 26. Juni 2011, 11:51 Uhr von Vieth1 (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Die Änderungsrate des exponentiellen Wachstums ist proportional zur Wachstumsfunktion f(x). Die Proportionalitätskonstante ist die Wachstumskonstante k. Bei beschränktem Wachstum müssen wir nun beachten, dass eine natürliche Schranke das exponentielle Wachstum verhindert. Die Änderungsrate des beschränkten Wachstums ist proportional zu der Differenz der Schranke S von der Ausgangsfunktion f(x). Die Proportionalitätskonstante ist die Wachstumskonstante k.

f'(x)=k*(S-f(x))

Die Lösung dieser Differenzialgleichung ist:

f(x)=S-c*e^{kt}

Dies kann man zum Beispiel so darstellen: Die Schranke S beträgt 5, dass heißt dass das exponentielle Wachstum nicht über den Wert von 5 hinauswächst.

f'(x)=5-f(x) => f(x)=5-c*e^{kt}