Playfair

Aus KAS-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Geschichte

Die Playfair-Verschlüsselung wurde 1854 von Charles Wheatstone erfunden. Er benannte sie nach einem Bekannten, Lord Lyon Playfair, der diese Methode dem britischen Militär empfahl. Sie wurde erstmals im Krimkrieg und von da an bis in den 1. Weltkrieg, in modifizierter Form sogar im 2. Weltkrieg, benutzt.


Verschlüsselung

Vorbereitung des Klartext

Beispiel: „Laboulaye lady will lead to Cibola temples of gold.“ (Deutsch: „Die Laboulaye-Dame wird [dich] zu den Cibola-Tempeln aus Gold führen.“)

Den obrigen Klartext schreiben wir zur Verschlüsselung in Bigramme. Es werden nur Großbuchstaben verwendet, Satzzeichen werden nicht benutzt und das "J" wird zu einem "I" umgewandelt. Bei der Bildung der Bigramme muss darauf geachtet werden das keine identischen Buchstaben in einem Bigramm entstehen. Um dies zu vermeiden wird gegebenenfalls ein "X" eingefügt. Das "X" wird auch eingefügt wenn am Ende ein Buchstabe alleine Steht.

LA BO UL AY EL AD YW IL LX LE AD TO CI BO LA TE MP LE SO FG OL DX


Playfair-Quadrat

Aus einem Schlüsselwort (oder Schlüsselsatz) wird ein permutiertes Alphabet mit 25 Buchstaben (ohne J) gewonnen. Dazu wird der Schlüssel buchstabenweise von oben links beginnend zeilenweise in eine 5×5-Matrix eingetragen, wobei bereits eingetragene Buchstaben im Folgenden ausgelassen werden. Danach werden die fehlenden Buchstaben in alphabetischer Reihenfolge ergänzt. So erhält man eine quadratische Anordnung aller 25 Buchstaben, die Playfair-Quadrat genannt wird. Als Beispiel zur Erzeugung eines Playfair-Quadrats wird hier das Schlüsselwort „DEATH“ (deutsch: Tod) benutzt.

Schlüssel: DEATH

D E A T H ← Eintragen des Schlüsselworts B C F G I ← Danach Auffüllen durch die restlichen Buchstaben K L M N O P Q R S U V W X Y Z


Verschlüsselung

Grundlage für die Verschlüsselung ist das mithilfe des Kennworts (hier: DEATH) erzeugte Playfair-Quadrat und der in Bigramme zerlegte Klartext. Es werden immer Klartext-Bigramme in Geheimtext-Bigramme umgewandelt, also Buchstabenpaare als Buchstabenpaare verschlüsselt. Stehen beide Buchstaben in der gleichen Spalte oder in der gleichen Zeile, werden jeweils die unteren beziehungsweise rechten Nachbarbuchstaben als Geheimbuchstaben genommen. Sollten die Buchstaben am Rand des Playfair-Quadrats stehen, wird einfach am anderen Rand fortgesetzt. Das Quadrat ist also links und rechts sowie oben und unten als verbunden anzunehmen, also topologisch auf einem Torus aufgewickelt zu denken. Aus dem Klartext-Bigramm EL wird so, wie unten zu erkennen, das Geheimtext-Bigramm CQ (die beiden unteren Nachbarn von E und L). Analog wird AD als TE verschlüsselt (die beiden rechten Nachbarbuchstaben zu A und D).

  • E * * * D E A T *
  • C * * * * * * * *
  • L * * * * * * * *
  • Q * * * * * * * *
  • * * * * * * * * *

EL → CQ AD → TE

Stehen die beiden Buchstaben des Klartext-Bigramms hingegen in unterschiedlichen Zeilen und Spalten, so ersetzt man den ersten Klarbuchstaben durch den in derselben Zeile aber in der Spalte des zweiten liegenden. Der zweite Klarbuchstabe wird durch den in derselben Zeile aber in der Spalte des ersten Klarbuchstabens ersetzt. Das Klartextpaar bildet also die diagonal gegenüber liegenden Ecken eines Rechtecks. Das Geheimtextpaar wird aus den übrigen beiden Ecken dieses Rechtecks erzeugt. Zum Beispiel bilden die beiden ersten Buchstaben LA des Klartextes im Playfair-Quadrat, wie unten zu erkennen, zwei Ecken eines Rechtecks, in dessen beiden übrigen Ecken die Buchstaben M und E stehen. Dies sind die gesuchten Geheimtext-Buchstaben.

  • E A * *
  • * * * *
  • L M * *
  • * * * *
  • * * * *

LA → ME

Insgesamt ergibt sich im Beispielfall folgende Playfair-Verschlüsselung:

Klartext: LA BO UL AY EL AD YW IL LX LE AD TO CI BO LA TE MP LE SO FG OL DX Geheimtext: ME IK QO TX CQ TE ZX CO MW QC TE HN FB IK ME HA KR QC UN GI KM AV


Entschlüsselung

Die Entschlüsselung ist die Umkehrung der Verschlüsselung. Ebenso wie der Verschlüssler erzeugt auch der Entschlüssler mithilfe des ihm bekannten Kennworts, das den Schlüssel repräsentiert, das identische Playfair-Quadrat. Anschließend wird zur Entschlüsselung des Geheimtextes sinngemäß die gleiche Methode wie bei der Verschlüsselung des Klartextes verwendet. In den Fällen, bei denen beide Geheimtextbuchstaben in derselben Spalte oder Zeile des Quadrats stehen, wird allerdings der obere beziehungsweise linke Nachbar ausgewählt, um so den Verschlüsselungsschritt umzukehren. Im Fall des Überkreuz-Schrittes ist das Verfahren für die Entschlüsselung identisch zur Verschlüsselung.

Entzifferung

Die Playfair-Verschlüsselung stellt eine Substitution für Buchstaben-Paare dar. Es handelt sich um eine bigraphische monoalphabetische Methode. Ähnlich wie bei der einfachen (monographischen) Buchstabensubstitution, beruhen Methoden zur Entzifferung von Playfair im Wesentlichen auf einer Analyse der Häufigkeitsverteilung hier der Buchstabenpaare (Bigramme). In der deutschen Sprache beispielsweise sind die Bigramme „er“, „en“ und „ch“ sehr häufig. Im Beispieltext fallen die „Doppler“ (also Bigramm-Wiederholungen) ME…ME, IK…IK, QC…QC und TE…TE sowie die „Reversen“ (Wiederholung eines umgedrehten Bigramms) CQ…QC auf, die sich in gleicher Weise im englischen Klartext wiederfinden. Da kein Buchstabe mit sich selbst gepaart wird, gibt es nur 600 (25×24) mögliche Buchstabenkombinationen, die substituiert werden. Überdies gibt es eine Reihe von Symmetrien, die teilweise schon am obigen Beispieltext erkannt werden können. So hilft der erwähnte Klartext-Geheimtext-Zusammenhang EL ↔ CQ und LE ↔ QC beim Bruch des Textes. Ist nämlich ein Bigramm geknackt, dann ist auch sofort das reverse (umgedrehte) Bigramm bekannt. In den Fällen des Überkreuz-Schrittes gibt es darüber hinaus noch weitere Beziehungen zwischen den vier auftretenden Buchstaben in der Art (vgl. beispielsweise obere linke Ecke des Quadrats) DC ↔ EB, CD ↔ BE, EB ↔ DC sowie BE ↔ CD, die der Angreifer zur Entzifferung ausnutzen kann. Ferner hat auch die geschilderte Methode zur Erzeugung des Playfair-Quadrats Schwächen, denn es endet häufig – wie auch im Beispiel – auf „XYZ“. Die Playfair-Verschlüsselung ist somit weit entfernt von einer allgemeinen bigraphischen Methode mit völlig willkürlicher Zuordnung der Buchstabenpaare und stellt in der heutigen Zeit kein sicheres Verschlüsselungsverfahren mehr dar. So lassen sich mit modernen Mitteln auch relativ kurze Playfair-Texte in sehr kurzer Zeit brechen. Die erste Veröffentlichung zur Entzifferung von Playfair stammt aus dem Jahr 1914 und wurde vom US-amerikanischen Kryptoanalytiker Joseph O. Mauborgne verfasst. Eine literarische Darstellung der Playfair-Verschlüsselung und ihrer Entzifferung findet sich im Kriminalroman „Have His Carcase“ (deutsch: „Zur fraglichen Stunde“) von Dorothy L. Sayers.

Quellen

http://de.wikipedia.org/wiki/Playfair

http://www.mathe.tu-freiberg.de/~hebisch/cafe/kryptographie/playfair.html