Ableitungsregeln.

Aus KAS-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Ableitungsregeln

Potenzregel

f\!(x)=x^n

=> f\!\,'(x)=nx^{n-1}


Beispiel

f\!(x)=x^2

=> f\!\,'(x)=2x^{2-1}=\!\,\boldsymbol{\underline{\underline{2x}}}

Summenregel

f\!(x)=g(x)+h(x)

=> f\!\,'(x)=g'(x)+h'(x)


Beispiel

f\!(x)=x^3+x^2

=> f\!\,'(x)= (x^3)' + (x^2)' = \boldsymbol{\underline{\underline{3x^2 + 2x}}}


Faktorregel

f\!(x)=k \cdot g(x)

=> f\!\,'(x)=k \cdot g'(x)


Beispiel

f\!(x)=6x^5

=> f\!\,'(x)=6*5x^{(5-1)} = \boldsymbol{\underline{\underline{30x^4}}}


Differenzregel

f\!(x)=g(x)-h(x)

=> f\!\,'(x)=g'(x)-h'(h)


Beispiel

f\!(x)=x^9-x^7

=> f\!\,'(x)= (x^9)' - (x^7)' = \boldsymbol{\underline{\underline{9x^8 + 7x^6}}}


Produktregel

f\!(x)=u(x) \cdot v(x)

=> f\!\,'(x)=u'(x) \cdot v(x)+u(x) \cdot v'(x)


Beispiel 1

f\!(x)=(4x^3-2x+1) \cdot (x^2-2x+5)


\mathrm{Bestandteile}\ \begin{cases}
u(x)=4x^3-2x+1\\
v(x)=x^2-2x+5
\end{cases}


\mathrm{Ableitungen\ der\ Bestandteile}\ \begin{cases}
u'(x)=12x^2-2\\
v'(x)=2x-2
\end{cases}


f\!\,'(x)=(12x^2-2) \cdot (x^2-2x+5)+(4x^3-2x+1) \cdot (2x-2)

f\!\,'(x)=12x^4-24x^3+60x^2-2x^2+4x-10+8x^4-8x^3-4x^2+4x+2x-2

f\!\,'(x)=\boldsymbol{\underline{\underline{20x^4-32x^3+54x^2+10x-12}}}



Beispiel 2

f\!(x)=x^n \cdot e^{x}

\mathrm{Bestandteile}\ \begin{cases}
u(x)=x^n\\
v(x)=e^{x}
\end{cases}


\mathrm{Ableitungen\ der\ Bestandteile}\ \begin{cases}
u'(x)=n \cdot x^{n-1}\\
v'(x)=e^{x}
\end{cases}


f\!\,'(x)=(n \cdot x^{n-1}) \cdot (e^{x})+(x^n) \cdot (e^{x})

f\!\,'(x)=\boldsymbol{\underline{\underline{x^{n-1} \cdot e^{x} \cdot (n+x)}}}

Quotientenregel

f\!(x)=\frac{u(x)}{v(x)}

=> f\!\,'(x)=\frac{u'(x) \cdot v(x)-u(x) \cdot v'(x)}{(v(x))^2}


Beispiel

f\!(x)=\frac{1-2x}{4+3x^2}

\mathrm{Bestandteile}\ \begin{cases}
u(x)=1-2x\\
v(x)=4+3x^2
\end{cases}



\mathrm{Ableitungen\ der\ Bestandteile} 
\begin{cases}
u'(x)=-2\\
v'(x)=6x
\end{cases}


f\!\,'(x)=\frac{(-2) \cdot (4+3x^2)-(1-2x) \cdot (6x)}{(4+3x^2)^2}

f\!\,'(x)=\boldsymbol{\underline{\underline{\frac{6x^2-6x-8}{(4+3x^2)^2}}}}


Kettenregel

f\!(x)=g(h(x)) bzw. f\!(x)=g(u) mit u=h\!(x)

=> f\!\,'(x)=h'(u) \cdot g'(h(x))

Die Ableitung von einer verketteten Funktion wird grob gesagt gebildet, indem man erst die äußere Ableitung und dann die innere bildet.

Beispiel

f\!(x) = (x^2 + 2x)^2
f\! '(x) = 2(x^2 + 2x)*(2x + 2)


Hilfestellung

f\!(x) = u(v(x))
f\! '(x) = u'(v(x)) * v'(x)

Beispiel von oben: f\! (x) = (x^2 + 2x)^2

u\!  =  ()^2u\! ' = 2()
v\! = x^2+2x v\! ' = 2x+2


f\! '(x) =2(x^2 + 2x)*(2x + 2)
Also: f\! '(x) = u'  (v(x)) * v'(x)

Umkehrregel

x=g(y)\ Umkehrfunktion\ von\ y=f(x)

=>\ g'(y)= \frac{1}{f'(x)}

Ableitungen (Ableitungsfunktionen) spezieller Funktionen

\!f(x) \!f'(x) \!f''(x)
\!a= konstante Zahl \!0 \!0
\!x^n \!nx^{(n-1)} \!n(n-1)x^{(n-2)}
\sqrt{x} \frac{1}{2\sqrt{x}} -\frac{1}{4x\sqrt{x}}
\!e^x \!e^x \!e^x
\!a^x \!a^x*ln\ a \!a^x*(ln\ a)^2
\! log_a x \! \frac{1}{x*ln\ a} \! \frac{-1}{x^2*ln\ a}
\! ln\ x \! \frac{1}{x} \! -\frac{1}{x^2}