Binominalverteilung.: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: <b><font size="4">Formel zu Berechnung der Binominalverteilung:</font></b> <br> <br> <math>B(n,p) = {n \choose k}\ * p^k * (1-p)^{n-k} </math> <br> <br> <br> B(n...)
 
Zeile 20: Zeile 20:
  
 
<math>
 
<math>
B(20;\frac{1}{2}) = {20 \choose 10}\ *  (\frac{1}{2}) ^{10} *  (1- \frac{1}{2} )^{20-10}  
+
B(20;\frac{1}{2}) = {20 \choose 10}\ *  (\frac{1}{2}) ^{10} *  (1- \frac{1}{2} )^{20-10} \ = \ 0,1762
 
</math>
 
</math>

Version vom 17. Dezember 2010, 11:07 Uhr

Formel zu Berechnung der Binominalverteilung:

B(n,p) = {n \choose k}\ *  p^k *  (1-p)^{n-k}


B(n;p) = Die Wahrscheinlichkeit k Erfolge aus n Versuchen zu bekommen
p = Wahrscheinlichkeit für den Treffer
n = Gesamtzahl der durchgeführten Versuche
k = Anzahl der günstigen Ereignisse/Treffer

Beispielrechnung:


p = \frac{1}{2} \qquad n = 20 \qquad k = 10



B(20;\frac{1}{2}) = {20 \choose 10}\ *  (\frac{1}{2}) ^{10} *  (1- \frac{1}{2} )^{20-10} \ = \ 0,1762