Exponentialfunktionen.: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
 
(29 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
Die Funktionsgleichung der Exponentialfunktion besteht aus folgender Form:  
 
Die Funktionsgleichung der Exponentialfunktion besteht aus folgender Form:  
  
                   f(x) = a<sup>x</sup>        oder auch        g(x) = c<math> \cdot</math>a<sup>x</sup>    wobei: c <math> \in</math> <math>\R</math>
+
                   f(x) = a<sup>x</sup>        oder auch        g(x) = c<math> \cdot</math>a<sup>x</sup>    wobei: c <math> \in</math> <math>\R</math>,    a > 0,    x <math>\in</math> <math>\R</math>  ist.
  
 +
Die Exponentialfunktion beschreibt für'' a > 1 einen Wachstumsprozess'' und für ''0 < a < 1 einen Zerfallsprozess''.
 +
 +
D.h.: a > 1 hat die Eigenschaft STRENG MONOTON STEIGERND und 0 < a < 1 hat die Eigenschaft STRENG MONOTON FALLEND.
 +
 +
<u>> Die natürliche Exponentialfunktion und ihre Ableitung:</u>
 +
 +
Die natürliche Exponentialfunktion f mit f(x)= e<sup>x</sup> hat die Ableitungsfunktion f ´mit f ´(x)= e<sup>x</sup>. Eine Stammfunktion ist F mit F(x)= e<sup>x</sup>.
 +
 +
ALLGEMEIN:
 +
 +
Ableitung: <br />f (x) = e<sup>v (x)</sup>
 +
 +
f ´(x)= e<sup>v (x)</sup><math>\cdot</math> v ´ (x)
 +
 +
Stammfunktion:<br /> F(x) = <math> \frac{1}{v'(x)} \cdot e^{v(x)} </math>
 +
 +
 +
BEISPIELE: <br /> 1.) f (x) = e<sup>5x</sup><br /><br />f ´(x)= 5 e<sup>5x</sup><br /><br />F(x)= <math>\frac{1}{5}</math> e<sup>5x</sup>+c<br /> <br />2.) f(x)=5 e <sup>3x+7</sup><br /><br />f ´(x)= 5 e<sup>3x+7</sup><math>\cdot</math>3 = 15 e<sup>3x+7</sup><br /><br /> F(x) =<math>\frac{5}{3}</math> e<sup>3x+7</sup>
 +
 +
         
 
<u>> Ableitung und Integrieren zusammengesetzter Funktionen:</u>
 
<u>> Ableitung und Integrieren zusammengesetzter Funktionen:</u>
 +
  
 
<u>> Untersuchung von Exponentialfunktionen:</u>
 
<u>> Untersuchung von Exponentialfunktionen:</u>
 +
> Kurvendiskussion Anhand eines Beispieles:<br /> <br /> Funktion: f(x)= 5x<math>\cdot</math>e<sup>- 1/2x</sup><br /><br />
 +
1.) Ableitungen:<br /> f ' (x)= 5<math>\cdot</math>e<sup>- 1/2x</sup> + 5x<math>\cdot</math>e<sup>- 1/2x</sup><math>\cdot</math>( - 1/2)<br />= e<sup>- 1/2x</sup> (5 - 5/2x)<br /><br /> f ' '(x)= - 1/2e<sup>- 1/2x</sup> (5 - 5/2x) + e<sup>- 1/2x</sup><math>\cdot</math>(- 5/2)<br /> = e<sup>- 1/2x</sup> (- 5/2 + 5/4x - 5/2)<br /> = e<sup>- 1/2x</sup> (5/4x - 5)<br /><br /> f ' ' '(x)= - 1/2e<sup>- 1/2x</sup> (5/4x - 5) + e<sup>- 1/2x</sup><math>\cdot</math>5/4<br />= e<sup>- 1/2x</sup> (- 5/8x + 5/2 + 5/4)<br />= e<sup>- 1/2x</sup> (15/4 - 5/8x)<br /><br />2.) Symmetrie:<br /> f ( -x) = 5<math>\cdot</math>(-x)<math>\cdot</math> e<sup>- 1/2<math>\cdot</math>(-x)</sup> = - 5x<math>\cdot</math>e<sup>1/2x</sup><math>\ne</math> f (x) --> KEINE ACHSENSYMMETRIE<br />f ( -x) = - 5x<math>\cdot</math> e<sup>1/2x</sup><math>\ne</math> - f(x) --> KEINE PUNKTSYMMETRIE<br /><br /> 3.) Nullstellen:<br /> notw. Bedingung f (x) = 0  <br /> 5x<math>\cdot</math>e<sup>- 1/2x</sup> = 0<br /> x = 0 <br /> N(0/0)<br /><br />4.) Verhalten gegen <math>\infty</math>:<br /><math> \lim_{x \to \infty}</math>5x<math>\cdot</math>e<sup>- 1/2x</sup> = 0 , weil 5x <math>\to</math> <math>\infty</math> und e<sup>- 1/2x</sup> <math>\to</math> 0<br /><br /> <math> \lim_{x \to -\infty}</math>5x<math>\cdot</math>e<sup>- 1/2x</sup> = <math> - \infty</math> , weil 5x <math> \to</math> <math>- \infty</math> und e<sup>- 1/2x</sup> <math> \to</math> <math> \infty</math><br /><br />5. Extremwerte: <br />notw. Bedingung f ' (x) = 0 <br /> e<sup>- 1/2x</sup><math>\cdot</math>(5- 5/2x) = 0<br /> Da e<sup>- 1/2x</sup> > 0 ist, braucht man nur die Klammer zu betrachten.<br /> 5 - 5/2x = 0<br />x = 2<br /><br /> hinreichende Bedingung f  ' ' (2), um zu überprüfen, ob es Hoch bzw Tiefpunkte gibt: <br /> f' '(2) = e<sup>- 1/2<math>\cdot</math>2 </sup>(5/4<math>\cdot</math>2 - 5)<br />= e<sup>- 1</sup>( 5/2 - 5)<br />=  - 0,92 < 0 daraus folgt: Es sind Hochpunkte vorhanden<br /> f (2) einsetzen, um zu überprüfen, wo der Hochpunkt ist<br />f (2) = 5<math>\cdot</math>2<math>\cdot</math>e<sup>- 1/2<math>\cdot</math>2</sup><br /><br /><math>\approx</math>3,68 d.h.: Hochpunkt (2 / 3,68)<br /><br />6. Wendestellen:<br /> notw. Bedingung f ' ' (x) = 0<br /> e<sup>- 1/2x</sup>( 5/4x -5) = 0 <br /> 5/4x -5 = 0<br />x = 4<br /><br /> hinreichende Bedingung: f ' ' '(4) um zu überprüfen, ob es Wendestellen gibt:<br /> e<sup>- 1/2<math>\cdot</math>4</sup>( 15/4 - 5/8<math>\cdot</math>4)<br /><math>\approx</math>0,17 <math>\ne</math> 0 d.h.: Wendestelle vorhanden<br /> bei: f (4)= 5<math>\cdot</math>4<math>\cdot</math>e<sup>- 1/2<math>\cdot</math>4</sup><br /><math>\approx</math>2,17 d.h.: Wendestelle (4/ 2,71)<br /><br />7. Graph:
 +
 +
[[Kategorie:Funktionen]]

Aktuelle Version vom 17. Dezember 2010, 10:34 Uhr

> Eigenschaften der Funktion:

Die Funktionsgleichung der Exponentialfunktion besteht aus folgender Form:

                 f(x) = ax        oder auch        g(x) = c	\cdotax    wobei: c  	\in \R,    a > 0,    x \in \R  ist. 

Die Exponentialfunktion beschreibt für a > 1 einen Wachstumsprozess und für 0 < a < 1 einen Zerfallsprozess.

D.h.: a > 1 hat die Eigenschaft STRENG MONOTON STEIGERND und 0 < a < 1 hat die Eigenschaft STRENG MONOTON FALLEND.

> Die natürliche Exponentialfunktion und ihre Ableitung:

Die natürliche Exponentialfunktion f mit f(x)= ex hat die Ableitungsfunktion f ´mit f ´(x)= ex. Eine Stammfunktion ist F mit F(x)= ex.

ALLGEMEIN:

Ableitung:
f (x) = ev (x)

f ´(x)= ev (x)\cdot v ´ (x)

Stammfunktion:
F(x) =  \frac{1}{v'(x)} \cdot e^{v(x)}


BEISPIELE:
1.) f (x) = e5x

f ´(x)= 5 e5x

F(x)= \frac{1}{5} e5x+c

2.) f(x)=5 e 3x+7

f ´(x)= 5 e3x+7\cdot3 = 15 e3x+7

F(x) =\frac{5}{3} e3x+7


> Ableitung und Integrieren zusammengesetzter Funktionen:


> Untersuchung von Exponentialfunktionen: > Kurvendiskussion Anhand eines Beispieles:

Funktion: f(x)= 5x\cdote- 1/2x

1.) Ableitungen:
f ' (x)= 5\cdote- 1/2x + 5x\cdote- 1/2x\cdot( - 1/2)
= e- 1/2x (5 - 5/2x)

f ' '(x)= - 1/2e- 1/2x (5 - 5/2x) + e- 1/2x\cdot(- 5/2)
= e- 1/2x (- 5/2 + 5/4x - 5/2)
= e- 1/2x (5/4x - 5)

f ' ' '(x)= - 1/2e- 1/2x (5/4x - 5) + e- 1/2x\cdot5/4
= e- 1/2x (- 5/8x + 5/2 + 5/4)
= e- 1/2x (15/4 - 5/8x)

2.) Symmetrie:
f ( -x) = 5\cdot(-x)\cdot e- 1/2\cdot(-x) = - 5x\cdote1/2x\ne f (x) --> KEINE ACHSENSYMMETRIE
f ( -x) = - 5x\cdot e1/2x\ne - f(x) --> KEINE PUNKTSYMMETRIE

3.) Nullstellen:
notw. Bedingung f (x) = 0
5x\cdote- 1/2x = 0
x = 0
N(0/0)

4.) Verhalten gegen \infty:
 \lim_{x \to \infty}5x\cdote- 1/2x = 0 , weil 5x \to \infty und e- 1/2x \to 0

 \lim_{x \to -\infty}5x\cdote- 1/2x =  - \infty , weil 5x  \to - \infty und e- 1/2x  \to  \infty

5. Extremwerte:
notw. Bedingung f ' (x) = 0
e- 1/2x\cdot(5- 5/2x) = 0
Da e- 1/2x > 0 ist, braucht man nur die Klammer zu betrachten.
5 - 5/2x = 0
x = 2

hinreichende Bedingung f ' ' (2), um zu überprüfen, ob es Hoch bzw Tiefpunkte gibt:
f' '(2) = e- 1/2\cdot2 (5/4\cdot2 - 5)
= e- 1( 5/2 - 5)
= - 0,92 < 0 daraus folgt: Es sind Hochpunkte vorhanden
f (2) einsetzen, um zu überprüfen, wo der Hochpunkt ist
f (2) = 5\cdot2\cdote- 1/2\cdot2

\approx3,68 d.h.: Hochpunkt (2 / 3,68)

6. Wendestellen:
notw. Bedingung f ' ' (x) = 0
e- 1/2x( 5/4x -5) = 0
5/4x -5 = 0
x = 4

hinreichende Bedingung: f ' ' '(4) um zu überprüfen, ob es Wendestellen gibt:
e- 1/2\cdot4( 15/4 - 5/8\cdot4)
\approx0,17 \ne 0 d.h.: Wendestelle vorhanden
bei: f (4)= 5\cdot4\cdote- 1/2\cdot4
\approx2,17 d.h.: Wendestelle (4/ 2,71)

7. Graph: