Kurvendiskussion: Unterschied zwischen den Versionen
(kat !; linkfix) |
Enrico (Diskussion | Beiträge) |
||
Zeile 17: | Zeile 17: | ||
In der Funktion gibt es nur '''gerade''' Exponenten | In der Funktion gibt es nur '''gerade''' Exponenten | ||
+ | |||
+ | === Keine Symmetrie === | ||
+ | |||
+ | Die Funktion enthält '''gerade''' als auch '''ungerade''' Exponenten | ||
== Nullstellen == | == Nullstellen == |
Version vom 19. April 2012, 14:14 Uhr
Inhaltsverzeichnis |
Definitionsbereich
Bei den meisten Funktionen gilt =
Ausnahmen gibt es bei gebrochenen rationalen Funktionen
Symmetrie
Punktsymmetrie
In der Funktion gibt es nur ungerade Exponenten
Achsensymmetrie
In der Funktion gibt es nur gerade Exponenten
Keine Symmetrie
Die Funktion enthält gerade als auch ungerade Exponenten
Nullstellen
Nullstellen sind die Schnittpunkte der Funktion mit der X-Achse.
Der Grad der Funktion gibt die höchst mögliche Anzahl der Nullstellen an.
Ableitungen
1. Ableitung
gibt die Steigung m im Punkt an.
2. Ableitung
gibt die Krümmung von an. Bei positiven Werten handelt es sich um eine Rechtskrümmung, bei negativen Werten um eine Linkskrümmung.
3. Ableitung
Zur Berechnung: siehe Ableitungsregeln
Extrempunkte
In Extrempunkten (Hoch- und Tiefpunkten) ist die Steigung m=0
also ist die notwendige Bedingung:
Die erhaltenen X-Werte setzt man nun in der hinreichenden Bedingung in die zweite Ableitung ein:
hierbei handelt es sich um eine Linkskrümmung, also um ein Minimum.
hierbei handelt es sich um eine Rechtskrümmung, also um ein Maximum.
Um die Y-Werte der Hoch- bzw. Tiefpunkte zu erhalten, setzt man die X-Werte in die Ursprungsfunktion ein.
Wendepunkte
In einem Wendepunkt wechselt die Krümmung zwischen links und rechts. Folglich ist die Krümmung, also die zweite Ableitung in diesem Punkt 0
Notwendige Bedingung
zusätzlich muss auch die hinreichende Bedingung erfüllt sein, um zu garantieren, dass es sich um einen Wendepunkt handelt:
Um die Y-Werte zu berechnen, setzt man die X-Werte in die Funktion ein.
Sattelpunkt
Bei einem Sattelpunkt handelt es sich um einen besonderen Wendepunkt, da es zu diesem Punkt eine waagerechte Tangente gibt. Folglich ist hier die Steigung m=0
Grenzwertverhalten
Das Grenzwertverhalten beschreibt den Verlauf des Graphen bei unendlich großen bzw. kleinen X-Werten.
Zeichnen
Beispiel
Definitionsbereich
Symmetrie
achsensymmetrisch
Beide Exponenten sind gerade, also ist die Funktion achsensymmetrisch.
Nullstellen
Ableitungen
1. Ableitung:
2. Ableitung
3. Ableitung
Extrempunkte
Notwendige Bedingung:
Hinreichende Bedingung:
Wendepunkte
Notwendige Bedingung:
Hinreichende Bedingung:
Grenzwertverhalten