Exponentialfunktionen.: Unterschied zwischen den Versionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche
Zeile 8: Zeile 8:
  
 
D.h.: a > 1 hat die Eigenschaft STRENG MONOTON STEIGERND und 0 < a < 1 hat die Eigenschaft STRENG MONOTON FALLEND.
 
D.h.: a > 1 hat die Eigenschaft STRENG MONOTON STEIGERND und 0 < a < 1 hat die Eigenschaft STRENG MONOTON FALLEND.
 +
 +
<u>> Die natürliche Exponentialfunktion und ihre Ableitung:</u>
  
 
            
 
            

Version vom 12. Dezember 2009, 13:15 Uhr

> Eigenschaften der Funktion:

Die Funktionsgleichung der Exponentialfunktion besteht aus folgender Form:

                 f(x) = ax        oder auch        g(x) = c	\cdotax    wobei: c  	\in \R,    a > 0,    x \in \R  ist. 

Die Exponentialfunktion beschreibt für a > 1 einen Wachstumsprozess und für 0 < a < 1 einen Zerfallsprozess.

D.h.: a > 1 hat die Eigenschaft STRENG MONOTON STEIGERND und 0 < a < 1 hat die Eigenschaft STRENG MONOTON FALLEND.

> Die natürliche Exponentialfunktion und ihre Ableitung:


> Ableitung und Integrieren zusammengesetzter Funktionen:


> Untersuchung von Exponentialfunktionen: