Rotationsintegrale.: Unterschied zwischen den Versionen
Zeile 32: | Zeile 32: | ||
Bei der Rotation um die y-Achse berechnen wir nun den Rotationskörper, der durch die Rotierung der Fläche A um die y-Achse entsteht. Die Fläche A wird durch einen Graphen, die y-Achse und den Gleichungen y=c und y=d. | Bei der Rotation um die y-Achse berechnen wir nun den Rotationskörper, der durch die Rotierung der Fläche A um die y-Achse entsteht. Die Fläche A wird durch einen Graphen, die y-Achse und den Gleichungen y=c und y=d. | ||
+ | Um das Volumen zu bestimmen, muss der Graph an der 1. Winkelhalbierenden gespiegelt werden (siehe Bild: 1.3 Umkehrfunktion - |
Version vom 14. Dezember 2009, 11:19 Uhr
Ein Rotationskörper ensteht, indem man eine Fläche um eine Drehachse rotieren lässt. Diese Fläche ist durch eine auf dem Intervall [a; b] stetige Funktion f, den Gleichungen x=a und x=b und der jeweiligen Achse eingeschlossen.
In der obenstehenden Abbildung handelt es sich, um eine Rotation um die x-Achse. Unser Ziel ist es das Volumen der Rotationskörper bei Rotierung um die x- bzw. y-Achse zu berechnen.
1. Rotation um die x-Achse
Beispiel (Rauminhalt eines Rotationskörpers bei Rotation um die x-Achse):
Wir haben den Graph der Funktion f mit f(x)=. Dieser begrenzt mit den Koordinatenachsen und der Geraden mit der Gleichung x=4 eine Fläche. Das Volumen berechnet man so:
2. Rotation um die y-Achse
Bei der Rotation um die y-Achse berechnen wir nun den Rotationskörper, der durch die Rotierung der Fläche A um die y-Achse entsteht. Die Fläche A wird durch einen Graphen, die y-Achse und den Gleichungen y=c und y=d. Um das Volumen zu bestimmen, muss der Graph an der 1. Winkelhalbierenden gespiegelt werden (siehe Bild: 1.3 Umkehrfunktion -