Quadratische Funktionen

Aus KAS-Wiki
Version vom 28. November 2009, 10:27 Uhr von Enrico S. (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Jede gemischtquadratisch Gleichung in der Form x²+px+q=0 kann man auf eine Gleichung der Form (x+d)²=r zurückführen. Die Zahl, die man bei x²+px ergänzen muss, damit man den neuen Term nach der ersten bzw. zweiten binomischen Formel als Quadrat schreiben kann, nennt man quadratische Ergänzung.

Es gibt verschiedene Gleichungsarten z.B. :


  • x²-16=0 | Als erstes die 16 auf die rechte Seite bringen, in dem man |+16 rechnet.
  • x²=16 | Da man auf beiden Seiten |+16 rechnen muss.
  • x²=16 | Nun zieht man die Wurzel aus 16 |√16
  • x=4 v x=-4 | Jetzt kann man die Lösungsmenge angeben |