Ganzrationale Funktionen

Aus KAS-Wiki
Wechseln zu: Navigation, Suche

f(x)= a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0



Nullstellen bestimmen: f(x)=0



1. Polynomdivision:

Bei Funktionen mindestens dritten Grades und sowohl geraden als auch ungeraden Exponenten, muss zur Bestimmung der Nullstellen eine Polynomdivision durchgefuehrt werden.

Vorgehensweise:

a) Bestimmung einer Nullstelle (N) der Funktion f(x) durch Erraten.

Tipp: als erstes immer für N = -3; -2; -1; 0; 1; 2; 3 einsetzen, da dass die gaengigen Nullstellen sind

b) Erstellung des Termes p(x) = (x - N) durch die soeben gefundene Nullstelle.

c) Nun vereinfacht man die Funktion durch den Bruch :\frac{f(x)}{p(x)} und setzt diesen = 0. Um dies jetzt zu lösen, geht man vor wie bei einer längeren Division.



2. Substitution:

Bei Gleichungen mit Exponente, die aus einer Zahlenreihe kommen. Damit ist beispielsweise 0, 2, 4, 6, 8 oder 3, 6, 9 gemeint.

Beispiel:

Funktion: f(x) = x^4 + 6x^2 + 8 = 0.

substituiere: x^2 = z

neue Funktion f(z)_n = z^2 + 6z + 8 = 0.

Nun lässt sich durch die p/q - Formel oder die quadratische Ergänzung die Nullstellen errechnen.

Schließlich wird die Substitution wieder rückgängig gemacht, indem man aus z +/- die Wurzel zieht.



3. p/q-Formel:

f(x) = x^2 + px + q = 0

x_{1,2} = \frac{-p}{2}  \pm \sqrt{ (\frac{-p}{2})^2-q }




4. quadratische Ergänzung:

Statt die p/q-Formel anzuwenden, können auch mithilfe der quadratischen Ergänzung Nullstellen von einer quadratischen Funktion bestimmt werden.

x^2 + ax = \underbrace {x^2 + ax + \frac{a^2}{4}}_{(x+\frac{a}{2})^2} - \frac{a^2}{4}