Funktionenscharen

Aus KAS-Wiki
Version vom 12. Dezember 2013, 10:23 Uhr von Haris Trgo (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche
\!1. \!2. \!3.
\!Nullstellen \!f(x)=0,pq-Formel, Polynomdivision Ist die Nullstelle von t abhängig? Ja » Einschränkungen bezüglich t beachten: » Habe ich durch t dividiert ? » Habe ich die Wurzel aus t gezogen ?
\!Extremstellen \!f'(x)=0, pq-Formel, Polynomdivision
\!f''(x)> 0  »Minimum; \!f''(x)<0  » Maximum, \!f''(x) ≠ 0, sonst Sattelpunkt. Ist die Extremstelle von t abhängig ? Ja » Abgleich von t mit der Aufgabenstellung (Einschränkungen für t) » ist \!f''(x) abhängig von t ? »» Dann Falluntersuchung ob ein Minimum oder Maximum vorliegt.
\!Wendepunkt \!f''(x)=0, pq-Formel; Polynomdivision \!f'''(x)≠ 0 sonst Ø Wendepunkt. Ist die Wendestelle von t abhängig ? »Ja wenn ...
\!Symmetrie(Punkt-,Achsen-) \!Punktsymmetrie: -f(x)=f(-x); Achsensymmetrie: f(x)=f(-x)
0) gehen.
\!Gemeinsame Punkte t1 und t2 mit t1 ≠ t2 einsetzen und dann gleichsetzen
t1 ≠ t2 \!f
\! Tangentengleichung \! \frac{1}{x*ln\ a} \! \frac{-1}{x^2*ln\ a}
Ortskurve der Extremstellen/Wendestellen 1. Bestimmung der Extremstelle x, 2.Extremstelle in ft(x) einsetzen » nach y auflösen, Diex-Koordinate nach t auflösen und t in y-Koordinate einsetzen
Geht nur, wenn Extremstelle von x abhängig ist !